

MIC5891

8-Bit Serial-Input Latched Source Driver

General Description

Functional Diagram

The MIC5891 latched driver is a high-voltage, high current integrated circuit comprised of eight CMOS data latches, CMOS control circuitry for the common STROBE and OUT-PUT ENABLE, and bipolar Darlington transistor drivers for each latch.

Bipolar/MOS construction provides extremely low power latches with maximum interface flexibility.

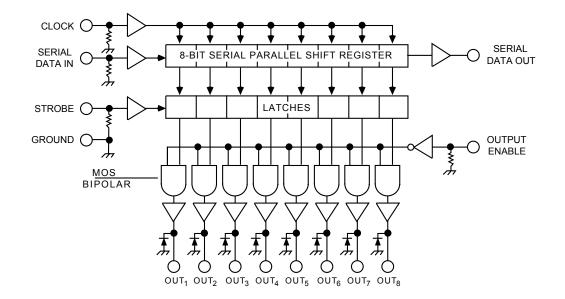
The MIC5891 will typically operate at 5MHz with a 5V logic supply.

The CMOS inputs are compatible with standard CMOS, PMOS, and NMOS logic levels. TTL circuits may be used with appropriate pull-up resistors to ensure a proper logic-high input.

A CMOS serial data output allows additional drivers to be cascaded when more than 8 bits are required.

The MIC5891 has open-emitter outputs with suppression diodes for protection against inductive load transients. The output transistors are capable of sourcing 500mA and will sustain at least 35V in the on-state.

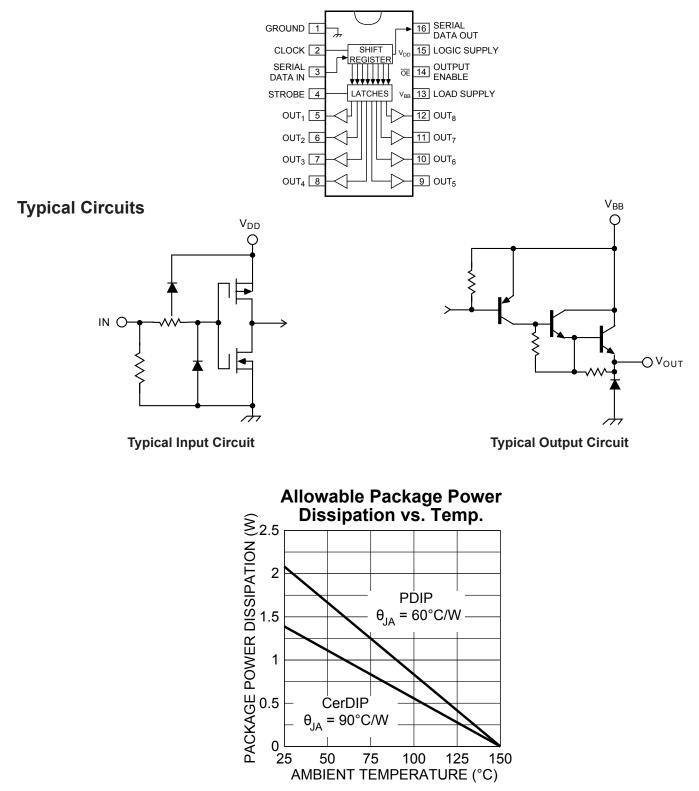
Simultaneous operation of all drivers at maximum rated current requires a reduction in duty cycle due to package power limitations. Outputs may be paralleled for higher load current capability.


The MIC5891 is available in a 16-pin plastic DIP package (N) and 16-pin wide SOIC package (WM).

Features

- · High-voltage, high-current outputs
- Output transient protection diodes
- CMOS-, PMOS-, NMOS-, and TTL-compatible inputs
- 5MHz typical data input rate
- Low-power CMOS latches

Applications


- Alphanumeric and bar graph displays
- LED and incandescent displays
- Relay and solenoid drivers
- Other high-power loads

Ordering Information

Part	Part Number		Temperature Benge	Package	
Star	andard Pb-Free		Temperature Range		
MIC	5891BN	MIC5891YN	–40°C to +85°C	16-Pin Plastic DIP	
MIC	5891BWM	MIC5891YWM	–40°C to +85°C	16-Pin Wide SOIC	

Pin Configuration

Output Voltage (V _{OUT})	50V
Logic Supply Voltage Range (V _{DD})	
Load Supply Voltage Range (V _{BB})	
Input Voltage Range (V _{IN})	–0.3V to V _{DD} +0.3V
Continuous Collector Current (I _c)	
Package Power Dissipation	
Operating Temperature Range (T _A)	–55°C to +125°C
Storage Temperature Range (T _s)	–65°C to +150°C

Note 1: $T_A = 25^{\circ}C$

Note 2: Derate at the rate of 20mW/°C above $T_A = 25$ °C.

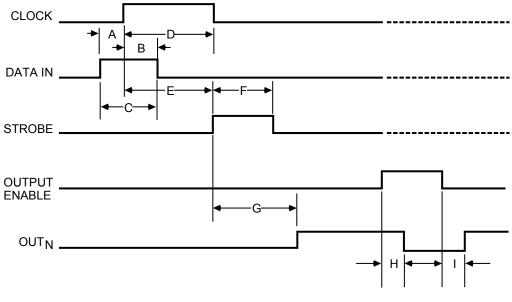
Note 3: Micrel CMOS devices have input-static protection but are susceptible to damage when exposed to extremely high static electrical charges.

Allowable Duty Cycles

Number of Outputs ON at	Max. Allowable Duty Cycles at T _A of:				
Ι _{ουτ} = -200 mA	50°C	60°C	70°C		
8	53%	47%	41%		
7	60%	54%	48%		
6	70%	64%	56%		
5	83%	75%	67%		
4	100%	94%	84%		
3	100%	100%	100%		
2	100%	100%	100%		
1	100%	100%	100%		

Electrical Characteristics

 V_{BB} = 50V, V_{DD} = 5V to 12V; T_A = +25°C; unless noted.


				Limits		
Characteristic	Symbol	V _{BB}	Test Conditions	Min.	Max.	Units
Output Leakage Current	I _{CEX}	50V	T _A = +25°C		-50	μA
			T _A = +85°C		-100	μA
Output Saturation Voltage	V _{CE(SAT)}	50V	Ι _{ουτ} = –100mA, Τ _A = +85°C		1.8	V
			Ι _{ουτ} = –225mA, Τ _A = +85°C		1.9	V
			I _{out} = –350mA, T _A = +85°C		2.0	V
Output Sustaining Voltage	V _{CE(SUS)}	50V	Ι _{ουτ} = –350mA, L = 2mH	35		V
Input Voltage	V _{IN(1)}	50V	$V_{DD} = 5.0V$	3.5	V _{DD} +0.3	V
			$V_{DD} = 12V$	10.5	V _{DD} +0.3	V
	V _{IN(0)}	50V	$V_{DD} = 5V$ to 12V	V _{ss} –0.3	0.8	V
Input Current	I _{IN(1)}	50V	$V_{DD} = V_{IN} = 5.0V$		50	μA
			$V_{DD} = 12V$		240	μA
Input Impedance	Z _{IN}	50V	$V_{DD} = 5.0V$	100		kΩ
			$V_{DD} = 12V$	50		kΩ
Maximum Clock Frequency	f _c	50V		3.3		MHz
Serial Data Output Resistance	R _{OUT}	50V	$V_{DD} = 5.0V$		20	kΩ
			$V_{DD} = 12V$		6.0	kΩ
Turn-On Delay	t _{PLH}	50V	Output Enable to Output, $I_{OUT} = -350 \text{mA}$		2.0	μs
Turnoff Delay	t _{PHL}	50V	Output Enable to Output, $I_{OUT} = -350 \text{mA}$		10	μs
Supply Current	I _{BB}	50V	all outputs on, all outputs open		10	mA
			all outputs off		200	μA
	I _{DD}	50V	V_{DD} = 5V, all outputs off, inputs = 0V		100	μA
			V_{DD} = 12V, all outputs off, inputs = 0V		200	μA
			V_{DD} = 5V, one output on, all inputs = 0V		1.0	mA
			V_{DD} = 12V, one output on, all inputs = 0V		3.0	mA
Diode Leakage Current	I _H	Max	T _A = +25°C		50	μA
			T _A = +85°C		100	μA
Diode Forward Voltage	V _F	Open	I _F = 350mA		2.0	V

Note 4: Positive (negative) current is defined as going into (coming out of) the specified device pin.

Note 5: Operation of these devices with standard TTL may require the use of appropriate pull-up resistors.

Timing Conditions

	$(V_{DD} = 5.0V, Logic Levels are V_{DD} and Ground)$	
Α.	Minimum data active time before clock pulse (data set-up time)	75ns
Β.	Minimum data active time after clock pulse (data hold time)	75ns
C.	Minimum data pulse width	150ns
D.	Minimum clock pulse width	150ns
	Minimum time between clock activation and strobe	
F.	Minimum strobe pulse width	
G.	Typical time between strobe activation and output transition	1.0µs
	Turnoff delay	
I.	Turn-on delay	see Electrical Characteristics

Timing Conditions

Truth Table

Serial		Shift Register Contents		Serial	Latch Contents		Output Content		
Data Input	Clock Input	$I_1 I_2 I_3 \dots I_{N-1} I_N$	Data Output	Strobe Input	$I_1 I_2 I_3 \dots I_{N-1} I_n$	Output Enable	$I_1 I_2 I_3 \dots I_{N-1} I_n$		
Н		$H R_1 R_2 \dots R_{N-2} R_{N-1}$	R _{N-1}						
L		$L R_1 R_2 R_{N-2} R_{N-1}$	R _{N-1}						
Х		$R_1 R_2 R_3 \dots R_{N-1} R_N$	R _N						
		X X X X X	Х	L	$R_1 R_2 R_3 \dots R_{N-1} R_N$				
		$P_1 P_2 P_3 \dots P_{N-1} P_N$	P _N	Н	$P_1 P_2 P_3 \dots P_{N-1} P_N$	L	$P_1 P_2 P_3 \dots P_{N-1} P_N$		
					X X X X X	Н	L L L L L		

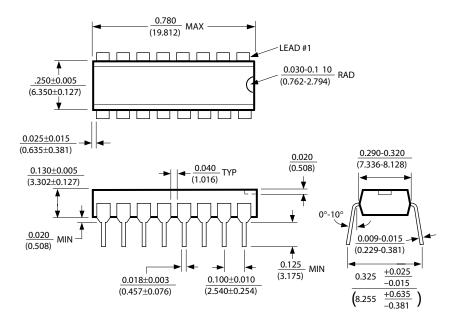
L = Low Logic Level

H = High Logic Level

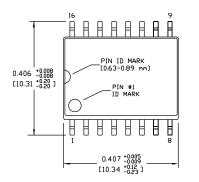
X = Irrelevant

P = Present State R = Previous State

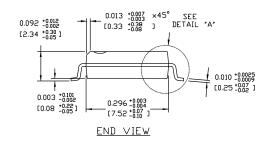
Applications Information

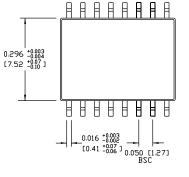

Serial data present at the input is transferred into the shift register on the rising edge of the CLOCK input pulse. Additional CLOCK pulses shift data information towards the SERIAL DATA OUTPUT. The serial data must appear at the input prior to the rising edge of the CLOCK input waveform.

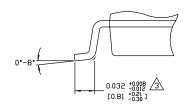
The 8 bits present in the shift register are transferred to the respective latches when the STROBE is high (serial-to-parallel conversion). The latches will continue to accept new data as


long as the STROBE is held high. Most applications where the latching feature is not used (STROBE tied high) require the OUTPUT ENABLE input to be high during serial data entry.

Outputs are active (controlled by the latch state) when the OUTPUT ENABLE is low. All Outputs are low (disabled) when the OUTPUT ENABLE is high. OUTPUT ENABLE does not affect the data in the shift register or latch.


Package Information





DETAIL "A"

NOTES: 1. DIMENSIONS ARE IN INCHESIMMI. 2. CONTROLLING DIMENSION: INCHES. 3. DIMENSION DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS, EITHER OF WHICH SHALL NOT EXCEED 0.006[0.15] PER SIDE. 10 Dim Wide St

16-Pin Wide SOIC (WM)

MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 1997 Micrel, Inc.